
PLMan (Propositional LogicMan) User’s Manual

— version 2.5.1

Takayuki Hoshi

E-mail address: hoshi103@chapman.edu

Contents

Chapter 1. Introduction to PLMan 5
1. Installation 5
2. PLMan Syntax 7

Chapter 2. The Language of Propositional Logics under PLMan 11
1. Well-Formed Formulas 11
2. Informal Conventions 13

Chapter 3. Systems of Logic 15
1. General Overview 15
2. Classical two-valued propositional logic (CPL) 17
3. Philosophical Objections to CPL 18
4. Kleene three-valued logic (K3) 19
5. ÃLukasiewicz three-valued logic (ÃL3) 20
6. Logic of paradox (LP) 20
7. R-Mingle three-valued logic (RM3) 21
8. A Fuzzy Logic (ÃL) 21
9. ÃLukasiewicz’ three-valued continuum-valued logic (ÃLℵ) 22
10. First Degree Entailment as a Four-valued Logic (FDE) 22

Chapter 4. Commands 27
1. System Commands 27
2. Commands involving Truth Values 29
3. Commands involving Relations 31
4. Useful User-friendly Commands 35

3

CHAPTER 1

Introduction to PLMan

PLMan, or Propositional LogicMan, is a user-friendly and powerful proposi-
tional logic (sometimes called sentential logic or propositional calculus) sentence
shell/interpreter written in Java, capable of handling many existing propositional
systems of propositional logic, especially the important ones.

With PLMan, one can

• Evaluate formulas under many logical systems
• Compare each logic and decide the best system which models a certain

environment of your consideration.
• Tell if the given formula is grammatically correct (well-formed) or not
• Translate a given well-formed formula (or wff) into English
• Write formulas in a visually pleasant manner with standard logical con-

nectives and Greek characters (both uppercase and lowercase) in Unicode
• Display truth tables of a given wff
• Determine the satisfiability, or validity, of a given wff
• Tell if a set of wffs entails a wff
• Assign and refer to the description of each propositional atom
• Build his/her own knowledge system (or even Axiomatic system)

A list of logics being implemented thus far is shown below:

• Classical two-valued propositional logic (CPL)
• Kleene three-valued logic (K3)
• ÃLukasiewicz three-valued logic (ÃL3)
• Logic of paradox (LP)
• R-Mingle three valued logic (RM3)
• A System of Fuzzy logic (ÃL)
• ÃLukasiewicz’ continuum-valued logic (ÃLℵ)
• First degree entailment as a four-valued logic (FDE)

1. Installation

1.1. Linux or Unix.

(1) Unzip the downloaded PLMan archive by some zip utility.
(2) There are two environment variables to be set in order to obtain PLMan’s

full functionality: “PLMAN_PATH” and “PLMAN_SCRIPT_PATH”.
PLMAN_PATH is the directory under which plman can be found. If,

for example, you unzipped PLMan archive under “/home/user/app/” di-
rectory, then “/home/user/app/plman” would be value that has to be
set.

5

6 1. INTRODUCTION TO PLMAN

PLMAN_SCRIPT_PATH is the directory under which plman script files
reside. This path is used by “:inputFile” command in interactive mode
(c.f. “:inputFile” subsection under chapter “Command”). If this environ-
ment variable is set, PLMan will look for the file specified as an argument
to :inputFile command under and only under the directory.

(3) Once these two environment variables are set, go under “$PLMAN_PATH/bin”
and copy “plman” directory to one of the directories where your OS looks
for commands to execute (for example, “/home/user/bin”, “/usr/local/bin”,
etc.).

(4) Finally, in order to execute PLMan, type:

plman

at your favorite command shell.
Another way to execute plman is simply to go under the plman path and type:

java -classpath lib/plman.jar:lib/ant.jar \
PropositionalLogicParser

or

java -classpath lib/plman.jar:lib/ant.jar \
PropositionalLogicParser <FILENAME>

1.2. Windows.

(1) Unzip downloaded PLMan archive by some zip utility.
(2) There are two environment variables to be set in order to obtain PLMan’s

full functionality: “PLMAN_PATH” and “PLMAN_SCRIPT_PATH”.
PLMAN_PATH is the address of the folder under which plman can be

found. If, for example, you unzipped PLMan archive under “C:\” folder,
then “C:\plman” would be value that has to be set; similarly, if you un-
zipped PLMan archive under “C:\Documents and Settings\Administrator”
but moved newly created “plman” folder to “C:\Program Files” folder,
then “C:\Program Files\plman” is the correct value to be set to PLMAN_PATH.

PLMAN_SCRIPT_PATH is the address of the folder under which plman
script files reside. This path is used by “:inputFile” command in interac-
tive mode. If this environment variable is set, PLMan will look for the
file specified by an argument under and only under the folder.

Note: If you who don’t know how to set those values, see section
“Setting Environment Variables.”

(3) Go under %PLMAN_PATH and then under ‘bin\’ folder. Copy ‘plman.bat’
inside the folder to either ‘C:\WINNT’ or ‘C:\Windows’ folder (the ex-
istence of either of which depends on a type of Windows used by the
user).

(4) Restart your computer.
(5) Open a command prompt and type:

plman

Another way to execute plman is simply to go under the plman path and type:

java -classpath lib/plman.jar:lib/ant.jar \
PropositionalLogicParser

or

2. PLMAN SYNTAX 7

java -classpath lib/plman.jar:lib/ant.jar \
PropositionalLogicParser <FILENAME>

1.3. Setting Environment Variables. The ways of setting values to en-
vironment variables differ from one operating system, and one environment, to
another. In this section, I will present several ways of doing so in several environ-
ments, taking environment variable ‘PLMAN_SCRIPT_PATH’ as our example.

Bash shell. On the shell, type something like
export PLMAN_SCRIPT_PATH="/path/to/PLMan/script/files"

Example:
export PLMAN_SCRIPT_PATH="/home/user_dir/plman/script"

Windows 9x. Run “cmd.exe” (command prompt). At the prompt, type some-
thing like:

C:\>set PLMAN_SCRIPT_PATH=C:\path\to\PLMan\script\files

Example:
C:\>set PLMAN_SCRIPT_PATH=C:\plman\script

You could add your exact input line to AUTOEXEC.BAT if you want the variable
to be set whenever you start your OS.

Windows 2000 (or XP). Either you follow the same procedure for Windows
9x, or you can follow the following instruction: Open the System icon in the the
Control Panel. Under the Advanced tab, there is a button labeled “Environment
Variables”. Click on the label, and then add PLMAN_SCRIPT_PATH and its correct
value to the system and then reboot your system. The procedure should be similar
for XP users.

Eshell (Emacs Shell), csh, and tcsh. On the shell prompt, type:
setenv PLMAN_SCRIPT_PATH "/path/to/PLMan/script/files"

2. PLMan Syntax

Unlike many existing languages that add unnecessary complication to their
syntax, PLMan’s syntax is simple and intuitive, so that the users, I suppose, would
have no hassle with grammatical expressions with PLMan.

PLMan’s program interpretation is line-oriented, i.e., executes code line by line.
Any input line to PLMan may be either a COMMAND expression, or one or more
sequence of STATEMENT expressions, which can be separated by a semicolon ‘;’.
Thus, a meta view of an PLMan input line would take either the form

<COMMAND_EXPR>

or

8 1. INTRODUCTION TO PLMAN

<STATEMENT> ; <STATEMENT> ; <STATEMENT>

With some exceptions, PLMan commands start with a colon ‘:’, immediately
followed by one or more English alphabets or digits. Hence, each command has a
line syntax of its own: command ‘:exit’, for example, takes no argument whereas
‘:setSystem’ command takes one argument, the name of a logical system. (For de-
tailed explanations and demonstrations of PLMan commands, see chapter “Com-
mands”.)

plman[i]> :setSystem "R3"
plman[i]> :exit -- ‘:exit’ exits PLMan

A STATEMENT can be either an ASSIGNMENT expression or a FORMULA
expression. An ASSIGNMENT expression may be one of the following forms:

(1) P = V
(2) P1 = V1, P2 = V2, ...
(3) P = FORMULA
(4) P1 = FORMULA1, P2 = FORMULA2, ...
(5) P : "Its description"

where (1) assigns a value V to a propositional atom P ; (2) assigns a value Vi to
each Pi sequentially in order; (3) assigns a value which is obtained by interpreting
FORMULA to a propositional atom P ; (4) assigns a value which is obtained by
interpreting FORMULAi to a propositional atom Pi; and (5) gives a description
(or its English semantics) to the propositional atom P .

Example:

plman[i]> x = 0
plman[i]> y = 1, z = 0
plman[i]> (x | y) => z
out[i]> False [0 ; False]
plman[i]> G : "Godel was a great logician."
plman[i]> GE : "Godel was a friend of Einstein." ; GA = 1
plman[i]> :: G & GE -- ‘::’ is an abbreviation

of command ‘:translate’
"Godel was a great logician." and "Godel was a friend of Einstein."

Precise definitions of (well-formed) formulas and FORMULA expressions will
be covered in the next chapter, but its syntax is pretty much standard:

Example:

plman[5]> a = 0, b = 1, c = 0, d = 1, e = 0
plman[6]> (a & b) | c -- is a formula
out[6]> False [0 ; False]
plman[7]> ((a) & b) => c | ~d <=> e -- is a formula
out[7]> True [1 ; True]

2. PLMAN SYNTAX 9

plman[8]> -- whereas,

plman[17]> &~ c -- is not.
SYNTAX ERROR: The input formula is ill-formed (i.e., doesn’t

follow the syntax). Input ignored...

Comment lines start with either “--” or “//”.

Example:

plman[i]> -- your comments here..
plman[i]> a & b -- your comments here..
plman[i]> a & b // your comments here..

2.1. Modes. There are two modes in PLMan: ‘interactive mode’ and ‘file-
input mode’.

Interactive mode is the one in which users can directly communicate with
PLMan line by line. Any user input will be evaluated on the fly, and the output
will be shown immediately.

File-input mode is the one enacted when a user specifies a plman script file
as a first argument to “plman” command. In this mode, PLMan will read the
contents of the file line by line until PLMan gets to the EOF (end of file) character;
the syntax itself is the same as the one explained so far. Switching from file-input
mode to interactive mode can be conveniently done by placing the exact line

:interactiveMode

somewhere in the input file.

CHAPTER 2

The Language of Propositional Logics under
PLMan

In this chapter, I will explain the language of propositional logics being imple-
mented in PLMan. There are currently 8 propositional logics that are available, but
all systems use the same alphabet and the same definition of well-formed formulas
(hence the word “language” in singular form). (In this and any other subsequent
chapters, I will not necessarily give proofs to important facts that may be stated
in the context (remember this is a user’s manual, not a text); but proofs may be
found in any rigorous introductory textbook on mathematical logic.) After the for-
mal specification of well-formed formulas, the informal (or shortcut) conventions for
input formulas, exclusively employed to save users’ input time, will be explained.

1. Well-Formed Formulas

Alphabet A of the language of propositional logics under PLMan is a set
consisting of the following strings:

(1) <TRUE> : “1” , “T” , “TRUE”
(2) <FALSE> : “0”, “F”, “FALSE”
(3) <NOT> : “¬”, “~”, “NOT”
(4) <AND> : “∧” , “&” , “AND”
(5) <OR> : “∨” , “|” , “OR”
(6) <MATERIAL_CONDITIONAL> : “⇒” , “=>” , “IMPLIES”
(7) <IFF> : “⇔” , “<=>” , “IFF”
(8) <PARENTHESES> : “(” , “)”
(9) <SPACE> : “ ”

(10) <NON_NEGATIVE_REAL>
(11) <PROPOSITIONAL_ATOM>

where <PROPOSITIONAL_ATOM> is defined as a set of the strings consisting of a
letter, including every Greek letter, followed by zero or more succession of either a
letter, a digit, or a ‘-’, but excluding any string defined in (1)-(10). In regular ex-
pression, it would be expressed as [A-Za-z_[:greek:]][A-Za-z0-9_-[:greek:]]*
(again, not including an element in (1)∪ (2)∪ ...∪ (10)). <NON_NEGATIVE_REAL> is
a set of real numbers that are not negative (3, 1.302, etc.). In any logical system,
<IFF> may be omitted (actually, if one would like to oversimplify the language, he
could also cut off <AND> and <OR> as well), but we nevertheless include the symbol
for our convenience. A complete list of Greek letters recognized by PLMan follows:

[:greek:] : “α” , “β” , “γ” , “δ” , “ε” , “ζ” , “η”, “θ” , “ι” , “κ” , “λ” , “µ” ,
“ν” , “ξ” , “o” , “π”, “ρ” , “σ” , “τ” , “υ” , “φ” , “χ” , “ψ” , “ω” , “Γ”, “∆” , “Θ”

11

12 2. THE LANGUAGE OF PROPOSITIONAL LOGICS UNDER PLMAN

, “Λ” , “Ξ” , “Π” , “Σ” , “Υ” , “Φ” , “Ψ”, “Ω”

(in Unicode: ”0x03B1” to ”0x03C1”, ”0x03C3” to ”0x03C9”, ”0x0393”, ”0x0394”,
”0x0398”, ”0x039B”, ”0x039E”, ”0x03A0”, ”0x03A3”, ”0x03A5”, ”0x03A6”, ”0x03A8”,
and ”0x03A9”, respectively.)

Semantically speaking, for each of the sets from (1) to (7), there is only one
“real” or correct string within the set; any other string in the set is merely an
abbreviation for the real one. For example, in <TRUE> we see the strings “1”, “T”
and “TRUE”; but the real representation within the set is actually “1”, and the rest
— “T” , “TRUE” — is an abbreviated (or human-understandable) representation
of “1”. The table of the “real” and its abbreviations is shown below.

Set Real Abbreviations
<TRUE> “1” “T” , “TRUE”
<FALSE> “0” “F”, “FALSE”
<NOT> “¬” “~”, “NOT”
<AND> “∧” “&” , “AND”
<OR> “∨” “|” , “OR”
<MATERIAL_CONDITIONAL> “⇒” “=>” , “IMPLIES”
<IFF> “⇔” “<=>” , “IFF”

Putting them all together, we obtain an unambiguous definition of the alphabet
for the language to be

A := <TRUE>∪ <FALSE>∪ <NOT>∪ <AND>∪ <OR>∪ <MATERIAL_CONDITIONAL>∪
<IFF> ∪ <SPACE> ∪ <NON_NEGATIVE_REAL> ∪ <PROPOSITIONAL_ATOM>

Now, define A∗ to be the set of finite strings over A, so that “p => (q&r)’
∈ A∗, “ζη1(T)) ⇒)” ∈ A∗, “I love PLMan”∈ A∗, and so forth.

We now give a formal definition of well-formed formulas (wffs).

Definition. Let α, β ∈ A∗. (Well-formed) formulas W ⊆ A∗ of propositional
logics under PLMan is the smallest subset of A∗ recursively satisfying the following
conditions1:

1: Any element in <PROPOSITIONAL_ATOM> ∪ <NON_NEGATIVE_REAL> ∪ <TRUE>
∪ <FALSE> is an element of W.

2: If α ∈ W, then (¬α) ∈ W
3: If α, β ∈ W, then (α ∧ β) ∈ W, (α ∨ β) ∈ W , (α ⇒ β) ∈ W, and

(α ⇔ β) ∈ W, respectively.

We call any formula obtained in (1) an atomic formula and any other formulas
composite formulas. As an important fact, each element constructed by 1-3 are
unique (Unique Readability).

1Another neat definition of wffs would be to first fix W0 = 〈PROPOSITIONAL ATOM〉
∪ 〈NON NEGATIVE REAL〉 ∪ 〈TRUE〉 ∪ 〈FALSE〉 and define Wn+1 := Wn ∪ {(¬α) | α ∈
Wn} ∪ {(α ∧ β), (α∨ β), (α ⇒ β), (α ⇔ β) | α, β ∈ Wn}. The resulting set obtained by the union
of W0 to W∞ — i.e., ∪∞n=0Wn — is actually the same as W, whose proof again can be seen in

any rigorous introductory book on mathematical logic.

2. INFORMAL CONVENTIONS 13

2. Informal Conventions

Formally in the language of propositional logic, an expression, say, ((¬p)∨(q ⇒
((¬r)∧s))) is a well-formed formula. However, since it is a bit cumbersome to keep
the formal syntax and write every formula in this manner, it is common to introduce
some informal conventions which is supposed to make it easier for humans to read
and write a formula without destroying its semantics. In our case, conventions are
as follows:

Let p, q, r, s be propositional atoms; α, β, and γ be wffs. Then,
(1) We may drop the outermost parentheses in a formula. For example, (p∨q)

can also be written as p ∨ q.
(2) We may let the negation symbol ¬ take precedence over any other con-

nectives when parentheses are missing, and the symbol applies to as little
as possible. We also let other propositional connective symbols — ∧,∨,⇒
and ⇔ — follow the same scheme according to the order of precedence:
1. ¬, 2. ∧ and ∨ (same), and 3. ⇒ and ⇔ (same). Thus, p ⇔ ¬q is now
a shorthand for (p ⇔ (¬q)).

(3) We group repetitions of propositional connective symbols with the same
precedence to the right when parentheses are missing. For example, α∨β∨
γ is a shorthand for α∨ (β ∨ γ). Likewise, α ⇒ β ⇔ γ will be interpreted
as α ⇒ (β ⇔ γ). (Note that some authors let ⇒ take precedence over
⇔, yielding (α ⇒ β) ⇔ γ. But since this can be confusing sometimes, I
decided not to do so.) The same applies to ∧ and ∨.

As an example, following our conventions, the formula ((¬p)∨(q ⇒ ((¬r)∧s)))
can simply be: ¬p ∨ (q ⇒ ¬r ∧ s).

A FORMULA expression in PLMan, then, is any well-formed formula, with or
without the above informal conventions being applied.

CHAPTER 3

Systems of Logic

In this chapter, we will first review the important concepts of propositional logic
and then move on to the general overviews of each logical systems implemented in
PLMan.

1. General Overview

In many of propositional logics whose interpretation is a function, the system
can be defined as a structure 〈TV, D, T 〉 where

• TV is a set of truth values
• D is a set of truth values for which the system yields True (a designated

set).
• T = { τc | c ∈ {¬,∧,∨,⇒,⇔}} is a set of truth functions for each con-

nective available to the system.
Let PA be an abbreviation for <PROPOSITIONAL_ATOM>. A truth assignment

v is a function v : PA → TV which, given a propositional atom, assigns a truth
value to it. (We will use PA to represent a set of propositional atoms henceforth.)

Given a truth assignment v, the interpretation function v̄ : W → TV, which
assigns a truth value to a well-formed formula, is defined recursively as follows:

• v̄(tv) = 1 if tv ∈ TV and tv ∈ D
• v̄(tv) = 0 if tv ∈ TV and tv 6∈ D
• v̄(α) = v(α) if α ∈ PA
• v̄(¬α) = τ¬(v̄(α))
• v̄(α¤β) = τ�(v̄(α), v̄(β)) where ¤ ∈ {∧,∨,⇒,⇔}, α, β ∈ W

where τ¬ : TV → TV and τ� : TV × TV → TV are semantic functions for each
connective, defined independently in each system. Suppose we are given a well-
formed formula α and a truth assignment v under the basis of which v̄ yields its
return values. Then we call v̄(α) the interpretation of α with respect to v.

In PLMan, the initial truth assignment v assigns False to all (undeclared)
propositional atoms. Thus, for example, the interpretation of an input formula “a
| b” with respect to initial assignment v when PLMan is first started, will return
false as illustrated below:

[Note that the underlying system here is "CPL"]

plman[i]> a | b
Propositional atom ‘a’ is undeclared. Returning False (value: 0) instead.

15

16 3. SYSTEMS OF LOGIC

Propositional atom ‘b’ is undeclared. Returning False (value: 0) instead.
out[i]> False [0 ; False]

This initial assignment v may be replaced with a new assignment if the user
changes the behavior of v (i.e., assigns some specific values to some propositional
atoms).

This initial behavior of v can be rejected by letting it return a different value
for certain propositional atoms, thus creating a new truth assignment with which
the interpretation function v̄ evaluates input formulas:

[Note that the underlying system here is "CPL"]

plman[i]> a = 0, b = 1
plman[i]> a | b
out[i]> True [1 ; True]

One can compute v̄ for any possible truth assignment v. In particular, given
distinct propositional atoms that appear in a wff α, we can simply list all possible
combinations of truth values for the propositions obtainable from truth assignments;
the list of such combinations, if each of which is paired with an answer computed
by v̄ for the given truth values, is called the truth table for α.

[Note that the underlying system here is "CPL"]

plman[i]> :table (a & ~b) => b

a b (a & ~b) => b
1 1 1
1 0 0
0 1 1
0 0 1

Say a truth assignment v satisfies a formula α if and only if the the returned
value of the interpretation of α with respect to v is an element of D — that is,
v̄(α) ∈ D. Here, we say that a formula α is satisfiable if there exists some truth
assignment v that satisfy α; similarly, α is called valid , or a tautology , if all
possible truth assignments satisfy it. Finally, given a set Σ of formulas (possibly
empty) and a formula α, fix a set S of all truth assignments that satisfy every
formula in Σ. If every satisfying truth assignment s in S also satisfies α as well,
then we say that Σ entails α (or Σ tautologically implies α); if that were the
case, we abbreviate the fact with symbols ‘Σ |= α’.

In PLMan, every command to check the conditions above — ‘:satisfiable α’,
‘:valid α’, and the expression ‘Σ | = α’, respectively — is simple and intuitive:

[Note that the underlying system here is "CPL"]

plman[i]> :satisfiable x & y

2. CLASSICAL TWO-VALUED PROPOSITIONAL LOGIC (CPL) 17

out[i]> True [1 ; True]
plman[i]> :satisfiable ~(x => y) & ~(x & ~y)
out[i]> False [0 ; False]
plman[i]> :valid (a | b) | ~(a | b)
out[i]> True [1 ; True]
plman[i]> { a , ~ a } |= everything
out[i]> True [1 ; True]
plman[i]> { a | b , a <=> ~ b } |= (a | b) & ~(a & b)
out[i]> True [1 ; True]

As stated earlier, PLMan currently provides 8 systems of propositional logic.
• Classical two-valued propositional logic (CPL)
• Kleene three-valued logic (K3)
• ÃLukasiewicz three-valued logic (ÃL3)
• Logic of paradox (LP)
• R-Mingle three valued logic (RM3)
• A System of Fuzzy logic (ÃL)
• ÃLukasiewicz’ continuum-valued logic (ÃLℵ)
• First degree entailment as a four-valued logic (FDE)

The general descriptions of each system will occupy the rest of the chapter.

2. Classical two-valued propositional logic (CPL)

Classical two-valued propositional logic (CPL) is certainly one of the most
important systems in propositional logic: it is embedded in classical First Order
Logic (FOL), the one employed as a base, underlying system in ZFC, from which
all branches of rigorous mathematics are derivable.

CPL is the structure 〈TV, D, T 〉 = 〈{0, 1}, {1}, { τc | c ∈ {¬,∧,∨,⇒,⇔}}〉.
The definitions of each function for connectives are given below.

τ¬ is a unary function, i.e., a function whose arity is one, defined by a truth
table as follows:

x τ¬
1 0
0 1

τ∧ is a binary function, i.e., a function with arity two, defined accordingly:
x y τ∧(x, y)
1 1 1
1 0 0
0 1 0
0 0 0

τ∨:

x y τ∨(x, y)
1 1 1
1 0 1
0 1 1
0 0 0

τ⇒:

x y τ⇒(x, y)
1 1 1
1 0 0
0 1 1
0 0 1

τ⇔:

x y τ⇔(x, y)
1 1 1
1 0 0
0 1 0
0 0 1

18 3. SYSTEMS OF LOGIC

3. Philosophical Objections to CPL

Logical strictness and limitation sacrifices a huge partition of what actually is
and leaves no room for what’s plausible, uncertain, or unlikely — thus, drawing
a dogmatic boundary to our thought, namely, to “what can be said.” CPL, for
instance, works well in the domain of Physics because our Universe for the most
part is deterministic (but not all deterministic1), which in some respect explains
why many formulations in mathematics directly applies to Nature without mod-
ification. But is it really the case that every object has a truth value of either
True or False? — Or even, that truth and falsity of every objective proposition is
knowable within a totality of its own? It turned out that the latter, if posed to the
domain of mathematics, is False: Gödel’s first incompleteness theorem tells us that
any consistent and decidable axiomatic system which extends the axioms of Peano
Arithmetic has at least one unprovable sentence with the axioms in the system.

The former is also objectionable2; for, if we are to accept this to be the case,
then it is up to each human mind to decide the truth and falsity of (possibly)
unknowable propositions. For example, ZFC takes for granted, without justice, the
existence of a set that contains inifinitely many sets, which is disguised under the
name of “the Axiom of Infinity.” But the problem is that the truth and falsity
of such proposition, if no justification is provided for it, pretty much depends on
the observers (I for one do not believe this to be the case unlike ZFC). True, it is
useful to suppose this axiom to be the case: then, mathematicians needn’t worry
about the finiteness of the objects of their consideration. But this observation lets
us to conclude that mathematics somehow takes a pragmatic stand toward the
understanding of the world and is not completely objective — that there in fact is
some relativity in its domain.3

CPL (and many other propositional logics as well) is also notorious for the ig-
norance of the “relevance” between propositions in a formula4. To see this, consider
the following inference in CPL:

(1) If Wittgenstein died on April 29 of 1951 (call it W), then no one can see
him in reality anymore (I).

(2) If no one can see Wittgenstein in reality anymore, Arthur Schopenhauer
disliked Georg Hegel (S).

(3) Therefore, we may infer that if Wittgenstein died on April 29 of 1951,
then Schopenhauer disliked Hegel.

1Modern quantum physics confirms physical interaction of objects at particle level is only
statistically predicted and thus is non-deterministic.

2There actually is a logic which tries to reconcile this problem: the Intuitionist logic. In its
essence, it says that the meaning of a formula (or a sentence) is determined not by the conditions
under which it is true, but by the conditions under which its proof is found (proof condition).
Conceivably, this system yields more accurate verification of the truth values of each statement
than CPL in that intuitionism won’t allow, for example, Φ∨¬Φ to be true unless one of proposition,
either Φ or ¬Φ, is proven. True, truth values obtained by this system is highly credible; as a matter
of fact, many computational automatic theorem provers now use intuitionist logic as their basis.
But this draws a even stricter boundery to the domain of our thought than an already strict and
inperfect logic: CPL. (Yet I do feel this is a much better logic than CPL itself is.)

3Consider also the unsolvability of Continuum Hypothesis, or another funny example Skolem
Paradox .

4There had been attempts to resolve this problem; one of the good ones is called Conditional
logic.

4. KLEENE THREE-VALUED LOGIC (K3) 19

Notice that (1)-(3) is a perfectly sound inference under CPL: (1) is true because
we can’t see someone who is deceased already; (2) is the case because I is true and,
as a historical fact, S is also the case; thus, by transitivity, we may conclude that
(3) is true. In symbols, this may be expressed as { W ⇒ I, I ⇒ S } |= W ⇒ S or,
because the completeness theorem holds, { W ⇒ I, I ⇒ S } ` W ⇒ S.

But we all notice that either of (2) and (3) is absurd, and in a real debate we
would immediately dismiss such an inference. It is clear therefore that when these
irrelevant statements are consciously interpreted within the domain of humans and
human communication — namely, dynamic systems involving time, memory, uncer-
tainly and belief — they suddenly turns into illogical statements. (Mathematicians
implicitly excludes (or conceals) this type of irrelevance between the antecedent and
the consequent; thus it is fair to say that mathematics involves human psychology.)

4. Kleene three-valued logic (K3)

K3 is a classical 3-valued propositional logic with the structure 〈TV, D, T 〉 =
〈{0, 1, 2
}, {1}, { τc | c ∈ {¬,∧,∨,⇒,⇔}}〉 This is a system which inherits the behavior
of CPL’s interpretation involving truth values 0 and 1. As is the case for CPL, 1
means true and 0 false; the truth value ‘2’ (often denoted as ‘u’) in K3 is used to
represent the condition of being “unknown.” For example, the proposition, as some
contemporary astrophysicists believe, that “there are 1 or more universes distinct
from the Universe in which the Earth resides” in this system will have the truth
value of 2 because it have not been (or can’t be) confirmed yet. The proposition
“Quine died on Christmas Day of 2000,” however, will have the value 1 because it
is a historical fact. The definitions of each function for connectives follow.

τ¬ is a unary function, i.e., a function whose arity is one, defined below:

x τ¬(x)
2 2
1 0
0 1

τ∧ is a binary function, i.e., a function with arity two, defined accordingly:

x y τ∧(x, y)
2 2 2
2 1 2
2 0 0
1 2 2
1 1 1
1 0 0
0 2 0
0 1 0
0 0 0

20 3. SYSTEMS OF LOGIC

τ∨:

x y τ∨(x, y)
2 2 2
2 1 1
2 0 2
1 2 1
1 1 1
1 0 1
0 2 2
0 1 1
0 0 0

τ⇒:

x y τ⇒(x, y)
2 2 2
2 1 1
2 0 2
1 2 2
1 1 1
1 0 0
0 2 1
0 1 1
0 0 1

τ⇔:

x y τ⇔(x, y)
2 2 2
2 1 2
2 0 2
1 2 2
1 1 1
1 0 0
0 2 2
0 1 0
0 0 1

5. ÃLukasiewicz three-valued logic (ÃL3)

System ÃL3 is a very slight modification of K3 which contains the fatal problem
that the law of identity a ⇒ a, which seems intuitively correct to humans, is not
even valid. L3 modifies K3 so that this problem be fixed. Thus, only functions
modified are τ⇒ and τ⇔ (again, τ⇔ can be obtained by τ∧(τ⇒(x, y), τ⇒(x, y))).

τ⇒:

x y τ⇒(x, y)
2 2 1
2 1 1
2 0 2
1 2 2
1 1 1
1 0 0
0 2 1
0 1 1
0 0 1

τ⇔:

x y τ⇔(x, y)
2 2 1
2 1 2
2 0 2
1 2 2
1 1 1
1 0 0
0 2 2
0 1 0
0 0 1

Example:

plman[i]> :setSystem "L3"
plman[i]> :valid a => a
out[i]> True [1 ; True]

6. Logic of paradox (LP)

System LP is exactly the same as K3 except for the elements of D: in LP , the
designated set is defined as D = {1, 2}, as opposed to K3 whose D contains only 1.
In this system, then, one can translate the truth value 2 as “both true and false”,
1 as “true and true only”, and 0 as “false and false only”, which are exactly the
PLMan translations of those values.
Example:

plman[i]> :setSystem "K3"
plman[i]> zeta = 2
plman[i]> zeta

8. A FUZZY LOGIC (ÃL) 21

out[i]> False [2 ; Unknown]
plman[i]> :setSystem "LP"
plman[i]> zeta
out[i]> True [2 ; Both true and false]

7. R-Mingle three-valued logic (RM3)

System RM3 modifies LP so that modus ponens be valid; the rest is the same
as LP otherwise.

τ⇒:

x y τ⇒(x, y)
2 2 2
2 1 1
2 0 0
1 2 0
1 1 1
1 0 0
0 2 1
0 1 1
0 0 1

τ⇔:

x y τ⇔(x, y)
2 2 2
2 1 0
2 0 0
1 2 0
1 1 1
1 0 0
0 2 0
0 1 0
0 0 1

8. A Fuzzy Logic (ÃL)

System ÃL is a system of fuzzy logic which can take an infinite number of truth
values between 0 and 1, inclusive. Thus, the system may be represented by the
structure 〈TV, D, T 〉 = 〈{x ∈ R | 0.0 ≤ x ≤ 1.0}, { x ∈ R | λ ≤ x ≤ 1.0}, { τc | c ∈
{¬,∧,∨,⇒,⇔}}〉 where λ is some real number between 0 and 1, inclusive. A
proposition which takes the truth value of 0.0 is sometimes said to be “completely
false”; the truth value of 1.0 “completely true.” One may interpret λ as a sort of
the very borderline between truth and falsity — values above and equal to λ are
true, below false. In PLMan, the default value of λ is 0.5; one can change the value
by typing;

:setBorderline x

where 0 ≤ x ≤ 1.
Semantic functions for connectives are defined as follows:

τ¬:

τ¬(x) = 1− x

τ∧:

τ∧(x, y) = min(x, y)

τ∨:

τ∨(x, y) = max(x, y)

22 3. SYSTEMS OF LOGIC

τ⇒:

τ⇒(x, y) =
{

1 if x ≤ y
1− (x− y) otherwise

τ⇔:

τ⇔(x, y) = τ∧(τ⇒(x, y), τ⇒(y, x))

Just as a note, if we let TV be {0.0, 0.5, 1.0} and D be {1} for ÃL, then the
resulting system behaves exactly the same as ÃL3.

9. ÃLukasiewicz’ three-valued continuum-valued logic (ÃLℵ)

ÃLℵ is the same as system ÃL except that the designated set D contains only
value 1. Thus the structure becomes 〈TV, D, T 〉 = 〈{x ∈ R | 0.0 ≤ x ≤
1.0}, {1.0}, { τc | c ∈ {¬,∧,∨,⇒,⇔}}〉 where every τc is the same as the ones
in ÃL.

10. First Degree Entailment as a Four-valued Logic (FDE)

Logic FDE differs from other systems we’ve seen so far in one fundamental
manner: its truth assignments are “relations”, not functions. Thus, although there
are actually only two truth values 1 (True) and 0 (False), i.e., TV = {0, 1}, any
propositional atom p of FDE may be in one of four states:

• p relates to 1 only [True and not False]
• p relates to 0 only [False and not True]
• p relates to both 1 and 0 [Both True and False]
• p relates to neither 1 nor 0 [Neither True nor False]

PLMan considers all of the above states as being distinct and labels these states
as 0, 1, 2, and 3, respectively. The designated values in FDE, then, are 1 and 2 (i.e.,
D = {1, 2}). If being interpreted this way, FDE may be considered as a 4-valued
logic.

A truth assignment in FDE is a relation R from PA to {0, 1}. As was the case
for logics explained earlier, we can extend a given assignment R and create a new
interpretation relation R̄ : W → TV, i.e. a relation from a set of wffs to a set of
truth values, recursively:

• α R̄ 1 iff α ∈ PA and α R d where d ∈ D
• α R̄ 0 iff α ∈ PA and α R d where d ∈ D
• ¬α R̄ 1 iff α R̄ 0
• ¬α R̄ 0 iff α R̄ 1
• α ∧ β R̄ 1 iff α R̄ 1 and β R̄ 1
• α ∧ β R̄ 0 iff α R̄ 0 or β R̄ 0
• α ∨ β R̄ 1 iff α R̄ 1 or β R̄ 1
• α ∨ β R̄ 0 iff α R̄ 0 and β R̄ 0
• α ⇒ β R̄ 1 iff ¬α R̄ 1 or β R̄ 1
• α ⇒ β R̄ 0 iff ¬α R̄ 0 and β R̄ 0
• α ⇔ β R̄ 1 iff α ⇒ β R̄ 1 and β ⇒ α R̄ 1

10. FIRST DEGREE ENTAILMENT AS A FOUR-VALUED LOGIC (FDE) 23

• α ⇔ β R̄ 0 iff α ⇒ β R̄ 0 or β ⇒ α R̄ 0

The truth conditions above yields the following truth tables. Here, one must
notice that the values that appear in the tables are “states” rather than “truth
values” as explained earlier.

x ¬x
3 3
2 2
1 0
0 1

x y x ∧ y
3 3 3
3 2 0
3 1 3
3 0 0
2 3 0
2 2 2
2 1 2
2 0 0
1 3 3
1 2 2
1 1 1
1 0 0
0 3 0
0 2 0
0 1 0
0 0 0

x y x ∨ y
3 3 3
3 2 1
3 1 1
3 0 3
2 3 1
2 2 2
2 1 1
2 0 2
1 3 1
1 2 1
1 1 1
1 0 1
0 3 3
0 2 2
0 1 1
0 0 0

x y x ⇒ y
3 3 3
3 2 1
3 1 1
3 0 3
2 3 1
2 2 2
2 1 1
2 0 2
1 3 3
1 2 2
1 1 1
1 0 0
0 3 1
0 2 1
0 1 1
0 0 1

x y x ⇔ y
3 3 3
3 2 1
3 1 3
3 0 3
2 3 1
2 2 2
2 1 2
2 0 2
1 3 3
1 2 2
1 1 1
1 0 0
0 3 3
0 2 2
0 1 0
0 0 1

FDE on PLMan.

Setting FDE as a current logic can be done by:

:setSystem "FDE"

In order to interpret any formula under FDE, one must first provide a truth
assignment (a relation); a truth assignment can be created by any input of the form

:createR <RELATION_SYMBOL> <RELATION>

where <RELATION> is any expression of the form:

< a1, v1 >, < a2, v2 >, ..., < an, vn >

and where ai ∈ PA and vi ∈ {0, 1}. Thus,

:createR R1 { <a,0> }

creates a relation R1 with an initial element <a,0>.
Once a relation is created, one can set the relation to FDE by:

:setR ExistingRelation

24 3. SYSTEMS OF LOGIC

ExistingRelation then will become the truth assignment of FDE with which PLMan
can interpret formulas. The default truth assignment is the one that has no rela-
tional element (i.e., a relation for which every propositional atom is interpreted as
neither true nor false).

In order to add or remove an element from an existing relation, type either of
the following

:addR ExistingRelation <PAIR>
:addR ExistingRelation <PAIR>, <PAIR>, ...
:removeR ExistingRelation <PAIR>
:removeR ExistingRelation <PAIR>, <PAIR>, ...

where <PAIR> is of the form:

< a, v >

such that a ∈ PA and v ∈ TV = {0, 1}. There are neat abbreviations for these
commands — please refer to “:addR” and “:removeR” sections in chapter “Com-
mands”.

To show the contents of an existing relation can be done by:

:showR ExistingRelation

Example:

plman[i]> :setSystem "FDE"
plman[i]> :createR R { <x,0>, <x,1>, <y,0> }
Relation ‘R’ is now created.
plman[i]> :setR R
Relation for the current system is now set to ‘R’.
plman[i]> :showR R
<x,0>
<x,1>
<y,0>
plman[i]> :addR R <z,1>
Pair <z,1> added to the current relation.
plman[i]> :addR R <y,1>, <z,0>
Pair <y,1> added to the current relation.
Pair <z,0> added to the current relation.
plman[i]> :showR R
<x,0>
<x,1>
<y,0>
<y,1>
<z,0>
<z,1>
plman[i]> :removeR R <x,0>, <y,1>
Pair <x,0> removed from the current relation.

10. FIRST DEGREE ENTAILMENT AS A FOUR-VALUED LOGIC (FDE) 25

Pair <y,1> removed from the current relation.
plman[i]> :showR R
<x,1>
<y,0>
<z,0>
<z,1>

CHAPTER 4

Commands

1. System Commands

1.1. :setSystem.

:setSystem "<SYSTEM_NAME>"

Command ‘:setSystem’ sets the system of logic specified by <SYSTEM_NAME>, as
the current underlying logical system in PLMan. The value of <SYSTEM_NAME> can
be either “CPL”, “K3”, “L3”, “L”, “LAleph”, “LP”, “RM3”, or “FDE”.

Example:

plman[i]> :setSystem "K3"
plman[i]> x = 2, y = 2
plman[i]> x => y
out[i]> False [2 ; Unknown]
plman[i]> :setSystem "L3"
plman[i]> x => y
out[i]> True [1 ; True]

Works on:
• All systems of logic.

1.2. :currentSystem.

:currentSystem

Command ‘:currentSystem’ outputs the name of the current logic under which
we are evaluating expressions.

Example:

plman[i]> :currentSystem
CPL
plman[i]> :setSystem "FDE"
plman[i]> :currentSystem

27

28 4. COMMANDS

FDE

Works on:
• All systems of logic.

1.3. :exit.

:exit

Command ‘:exit’ exits PLMan.

Example:

plman[i]> :exit

Works on:
• All systems of logic.

1.4. :interactiveMode.

:interactiveMode

Command ‘:interactiveMode’ switches the FileInput mode to Interactive
mode . This is useful if one inputs a PLMan script file to PLMan, but wants to
communicate with PLMan interactively based on the knowledge given by the script.

Example:

$ ls
test.plman
$ cat test.plman
-- Mode Switch Demo

S : "PLMan reached :interactiveMode command input
line in a plman script file "

E : "you executed the file"
I : "you are in the PLMan interactive mode."

:interactiveMode

$ plman test.plman
------------------ PLMan: Reading input strings from file ‘test.plman’

plman[i]> S : "PLMan reached :interactiveMode command input
line in a plman script file "

2. COMMANDS INVOLVING TRUTH VALUES 29

plman[i]> E : "you executed the file"
plman[i]> I : "you are in the PLMan interactive mode."
plman[i]> :interactiveMode
-- INTERACTIVE MODE SESSION STARTS HERE
plman[i]> S = 1, E = 1, I = 0
plman[i]> (S & E) => I -- this should be because you are

in fact in interactive mode
out[i]> False [0 ; False]
plman[i]> I = 1
plman[i]> (S & E) => I
out[i]> True [1 ; True]
plman[i]>

Works on:
• All systems of logic.

2. Commands involving Truth Values

2.1. :table.

:table <FORMULA>

Command ‘:table’ outputs the truth table of the given FORMULA.
The maximum number of elements in the table excluding the elements in the

answer (or formula) column, which can be calculated by the number of truth values
in the current system raised to the power of the number of distinct propositional
atoms in the given formula (e.g., the number of elements for “a | b & c” under CPL
is 23 = 8) , is set to the maximum value of the natural part of the long integer
— namely, 263 − 1 (9,223, 372,036,854,775,807). Strictly speaking, this maximum
value can be set to 263, which is more succinct and more desirable, but there is a
technical constraint that prevents me from doing so.

Works on:
• “CPL”
• “K3”
• “L3”
• “LP”
• “RM3”
• “FDE”

2.2. :satisfiable.

:satisfiable <FORMULA>

30 4. COMMANDS

Command ‘:satisfiable’ returns either True or False; if the formula is satisfiable
then the system will return True; False otherwise.

As is the case for ‘:table’ command, if we let the number of truth values in the
current system be b and the number of distinct propositional atoms in the given
formula be n, then it must always be the case that bn < 263, presupposing that
bn ∈ N; otherwise, the PLMan will reject the request.

Example:

plman[i]> :setSystem "CPL"
plman[i]> :satisfiable a & ~a
out[i]> False [0 ; False]
plman[i]> :setSystem "FDE"
plman[i]> :satisfiable a & ~a
out[i]> True [1 ; True and not false]
plman[i]> :setSystem "LP"
plman[i]> :satisfiable a & ~a
out[i]> True [1 ; True and true only]

Works on:
• “CPL”
• “K3”
• “L3”
• “LP”
• “RM3”
• “FDE”

2.3. :valid.

:valid <FORMULA>

Command ‘:valid’ returns either True or False; if the formula is valid it will
return False; True otherwise.

As is the case for ‘:table’ command, if we let the number of truth values in
the current system be b, the number of distinct propositional atoms in the given
formula be n, then it must always be the case that bn < 263, presupposing that
bn ∈ N; otherwise, the PLMan will reject the request.

Example:

plman[i]> :setSystem "CPL"
plman[i]> :valid a | ~a
out[i]> True [1 ; True]

plman[i]> :setSystem "K3"
plman[i]> :valid a | ~a
out[i]> False [0 ; False]

3. COMMANDS INVOLVING RELATIONS 31

plman[i]> :setSystem "FDE"
plman[i]> :valid a | ~a
out[i]> False [0 ; False and not true]

Works on:
• “CPL”
• “K3”
• “L3”
• “LP”
• “RM3”
• “FDE”

2.4. Entailment ‘| =’.

{ a, b, c, ... } |= d

Greek alphabets above are formulas. Inside must be contained one or more for-
mulas (i.e., cannot be empty). It returns either True or False: True if {a,b,c,...}
entails d, False otherwise.

Example:

plman[i]> :setSystem "CPL"
plman[i]> { a | b , a <=> ~ b } |= (a | b) & ~(a & b)
out[i]> True [1 ; True]

Works on:
• “CPL”
• “K3”
• “L3”

3. Commands involving Relations

Currently, all commands explained in this section are used only on system
“FDE”.

3.1. :createR.

:createR <RELATION_SYMBOL> <RELATION>

Command ‘:createR’ creates a relation of the name <RELATION_SYMBOL> from
a set of propositional atoms to a set of truth values.

<RELATION> is any expression of the form:

< a1, v1 >, < a2, v2 >, ..., < an, vn >

32 4. COMMANDS

where n is some natural number (thus includes 0, in which case the form will look
like: { })

Here, ai is an element in <PROPOSITIONAL_ATOM>; vi in the set of truth values
for they underlying logical system. (precisely speaking, however, PLMan allows vi

to be in <PROPOSITIONAL_ATOM> for the future extensibility, but doing so will have
no effect.) ai doesn’t have to be an non-existent: it can be an already existing
relation as well.

Example:

plman[i]> :setSystem "FDE"
plman[i]> :createR R1 { <a,0> }
Relation ‘R1’ is now created.
plman[i]> :showR R1
<a,0>
plman[i]> :createR R2 { }
Relation ‘R2’ is now created.
plman[i]> :showR R2 -- nothing will appear
plman[i]> :createR R1 { <a,1>, <b,1> , <b,0> , <d,0> }
Relation ‘R1’ is now created.
plman[i]> :showR R1
<a,1>
<b,0>
<b,1>
<d,0>

Works on:
• “FDE”

3.2. :setR.

:setR ExistingRelation

It sets a relation to a logical system whose interpretation depends on it. If the
current logic do not require a relation to be set, then ‘:setR’ takes no effect.

Example:

plman[i]> :setSystem "CPL"
plman[i]> :createR R { <x,0> }
Relation ‘R’ is now created.
plman[i]> :setR R
WARNING: Symbol ‘R’ is not an relation object. The attempt failed...
plman[i]> :setSystem "FDE"
plman[i]> :setR R
Relation for the current system is now set to ‘R’.

3. COMMANDS INVOLVING RELATIONS 33

Works on:
• “FDE”

3.3. :addR.

:addR ExistingRelation <PAIR>
:addR ExistingRelation <PAIR>, <PAIR>, ...

Command ‘:addR’ adds an element expressed by <PAIR> to an already existing
relation.

<PAIR> is of the form:

< a, v >

and where a ∈ PA and v ∈ TV.
Once a truth assignment relation R is set to the correct logic, then one can

abbreviate

:addR R <PAIR>
:addR R <PAIR>, <PAIR>, ...

simply as

<PAIR>
<PAIR> , <PAIR>, ...

Example:

plman[i]> :setSystem "FDE"
plman[i]> :createR R { <x,0> }
Relation ‘R’ is now created.
plman[i]> :addR R <x,1>
Pair <x,1> added to the current relation.
plman[i]> :showR R
<x,0>
<x,1>
plman[i]> :setR R
plman[i]> <y,1> , <y,0> -- adding those elements
Pair <y,1> added to the current relation.
Pair <y,0> added to the current relation.
plman[i]> :showR R
<x,0>
<x,1>
<y,0>
<y,1>

Works on:

34 4. COMMANDS

• “FDE”

3.4. :removeR.

:removeR ExistingRelation <PAIR>
:removeR ExistingRelation <PAIR>, <PAIR>, ...

Command ‘:removeR’ removes an element expressed by <PAIR> to an already
existing relation.

<PAIR> is of the form:

< a, v >

and where a ∈ PA and v ∈ TV.
Once a truth assignment relation R is set to the correct logic, then one can

abbreviate

:removeR R <PAIR>
:removeR R <PAIR>, <PAIR>, ...

as simply,

\ <PAIR>
\ <PAIR> , <PAIR>, ...

Example:

plman[i]> :setSystem "FDE"
plman[i]> :createR R { <x,0> , <x,1> , <y,0> , <y,1> }
Relation ‘R’ is now created.
plman[i]> :removeR <y,1> , <y,0>
plman[i]> :setR R
plman[i]> \ <y,1> , <y,0> -- removing those elements
Pair <y,1> removed from the current relation.
Pair <y,0> removed from the current relation.
plman[i]> :removeR R <x,1>
Pair <x,1> removed from the current relation.
plman[i]> :showR R
<x,0>

Works on:
• “FDE”

3.5. :showR.

:showR ExistingRelation

4. USEFUL USER-FRIENDLY COMMANDS 35

Command ‘:showR’ shows the contents of a given relation ‘ExistingRelation’.

Example:

plman[i]> :setSystem "FDE"
plman[i]> :createR Philosophers-of-Mathematics-in-20th-century

{ <Plato,0>, <Godel,1> }
Relation ‘Philosophers-of-Mathematics-in-20th-century’ is now created.
plman[i]> :addR Philosophers-of-Mathematics-in-20th-century

<Brouwer,1> , <Kant,0> , <Quine,1>
Pair <Brouwer,1> added to the current relation.
Pair <Kant,0> added to the current relation.
Pair <Quine,1> added to the current relation.
plman[i]> :addR Philosophers-of-Mathematics-in-20th-century

<Curry,0>, <Curry,1>
Pair <Curry,0> added to the current relation.
Pair <Curry,1> added to the current relation.
plman[i]> -- Because "Curry" in English is also a word for a

spiced dish with curry powder
plman[i]> :showR Philosophers-of-Mathematics-in-20th-century
<Brouwer,1>
<Curry,0>
<Curry,1>
<Godel,1>
<Kant,0>
<Plato,0>
<Quine,1>

Works on:
• “FDE”

4. Useful User-friendly Commands

4.1. :translate or ::

:translate <FORMULA>
:: <FORMULA>

Command ‘:translate’ or its abbreviation ‘::’ outputs the English translation
of the given FORMULA.

Example:

plman[i]> S : "Socrates is a man" -- ‘:’ is the description
assignment operator

36 4. COMMANDS

plman[i]> H : "Socrates is a human" , W : "Socrates is a woman"
plman[i]> :: S <=> (H & ~W)
"Socrates is a man" if and only if ["Socrates is a human" and

it is not the
case that "Socrates is a woman"]

Works on:
• All systems of logic (but may not correctly translate the given connectives

if their meaning differ from those given in CPL)

4.2. :inputFile.

:inputFile "<FILENAME>"

Command ‘:inputFile’ takes a file of <FILENAME> from the path set to the
environment variable ‘PLMAN_SCRIPT_PATH’.

Works on:
• All systems of logic.

